VIRGINIA COMMONWEALTH UNIVERSITY

Parsing MetaMap Files in Hadoop

Amy L. Olex, M.S., Alberto Cano, Ph.D., Bridget McInnes, Ph.D.

Department of Computer Science

Hadoop for the Desktop

The **deluge of data** in today's information-centric world requires bigger and better computing resources for processing. This can be a limiting factor in how much data labs with **limited computing resources** are able to handle. This project explores the pitfalls of a serial program that parses MetaMap files to identify UMLS CUI bigrams in a large set of scientific literature. The algorithm is re-implemented in Hadoop MapReduce to **overcome resource bottlenecks**.

UMLS, CUIs, and MetaMap....Oh My!

MapReduce in 30 seconds

UINISI	 Unified Medical Language System Repository of biomedical vocabularies Facilitates automated information retrieval (e.g. linking health information and billing codes across systems). Provides language normalization by linking similar terms to same concept/meaning. 	CUI1CUI2 CUI3CUI4 EOU Utterance CUI1CUI2 EOU Split input by record> identify Key, Value > pairs in parallel> sum values with same key		
CUI	 Concept Unique Identifier ID assigned to each unique concept in the UMLS. E.g. Headache and Cranial Pain are both assigned to the CUI <i>C0018681</i> 	 MapReduce Advantages Inherent and scalable parallelization. Writes results to diskall intermediate and final. 		
	 Tool that identifies UMLS concepts in biomedical texts. Output mapped text to compressed MetaMap Machine Output (MMO) files. Parsed 23,343,329 citations to create the 2015 MedLine/PubMed Baseline dataset779 MMO files compressed to 132GB. 	 No MySQL communication. Results <u>CuiCollectorMapReduce</u> Extracts CUI bigrams using Hadoop MapReduce framework. Desktop implementation (a single node Hadoop system). 		

UMLS::Association

Dataset

UMLS CUIs can be used to normalize biomedical and clinical text for use in natural language processing applications. By counting **CUI Bigram frequency**—the number of times two CUIs appear close to each other in text-the UMLS::Association package can **identify related concepts**. E.g. head ache and aspirin.

MetaMap File Anatomy

Utterance

16691646.ti.1 "Statement of Cases of Gonorrhoeal and Purulent Ophthalmia..."

Phrase 1 "Statement of Cases of <u>Gonorrhoeal</u> "							
Mapping	"Statement" "Cases" "Gonorrhoeal"						
	C1710187	C0868928	C0018081	Case (situation)			
Mapping	<i>"Statement</i> C1710187	" "Cases" " <u>Gon</u> C1533148	<i>orrhoeal"</i> C0018081	'Case unit dose'			
			Adjacent CUI Bigrams				
Phrase Z "Purulent Onbthalmia"			C1710187 - C0868928				
			C0868928 - C0018081				
Mapping "Purulent Ophthalmia"			C0018081 - C0259800				
C0259800			C1710187 - C1533148				
			C1533148 - C0018081				

Conclusion and Future Work

Parsing CUI Bigrams in Hadoop on a desktop computer resulted in **significant speedup**, and enables **parsing larger datasets** that were not previously feasible. Algorithm improvements include a window size to collect distant CUI bigrams and crossing utterances to process full PubMed citations. Future work includes testing the scalability on a Hadoop cluster, resolving an issue with the compressed input file format to improve mapping efficiency, identifying optimal Hadoop settings for a desktop implementation, and re-implementing in SPARK to take advantage of its in-memory storage of intermediate results.

In conclusion, **desktop implementations** of Hadoop can **resolve computing resource problems** and **process data faster**, opening up **more research areas** in big data processing for smaller labs.

Serial Limitations

- Processes one file/one utterance at a time with nested for loops.
 Regularly writes nested bigram hash table to MySQL database due to memory limitations, introducing DB communication latency.
- Perl code is **not paralellizable** due to limitations in sharing nested hashes across threads.

References

[1] Bodenreider O. "The unified medical language system (UMLS): integrating biomedical terminology." *Nucleic acids research*, 2004, 32, D267-D270.
[2] Aronson AR and Lang F. "An overview of MetaMap: historical perspective and recent advances." *JAMIA*, 2010, 17:3, 229-236.

Contact <u>alolex@vcu.edu</u> or <u>btmcinnes@vcu.edu</u> for more information.